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Long-time fluctuations in a dynamical model of stock market indices
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Financial time series typically exhibit strong fluctuations that cannot be described by a Gaussian distribution.
Recent empirical studies of stock market indices examined whether the distributionP(r ) of returnsr (t) after
some timet can be described by a~truncated! Lévy-stable distributionLa(r ) with some index 0,a<2. While
the Lévy distribution cannot be expressed in a closed form, one can identify its parameters by testing the
dependence of the central peak height ont as well as the power-law decay of the tails. In an earlier study@R.
N. Mantegna and H. E. Stanley, Nature~London! 376, 46 ~1995!# it was found that the behavior of the central
peak ofP(r ) for the Standard & Poor 500 index is consistent with the Le´vy distribution witha51.4. In a more
recent study@P. Gopikrishnanet al., Phys. Rev. E60, 5305~1999!# it was found that the tails ofP(r ) exhibit
a power-law decay, with an exponenta>3, thus deviating from the Le´vy distribution. In this paper we study
the distribution of returns in a generic model that describes the dynamics of stock market indices. For the
distributionsP(r ) generated by this model, we observe that the scaling of the central peak is consistent with
a Lévy distribution while the tails exhibit a power-law distribution with an exponenta.2, namely, beyond the
range of Lévy-stable distributions. Our results are in agreement with both empirical studies and reconcile the
apparent disagreement between their results.

DOI: 10.1103/PhysRevE.64.026101 PACS number~s!: 02.50.2r, 05.40.Fb, 05.70.Ln
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I. INTRODUCTION

Financial time series are generated by complex dynam
processes that exhibit strong correlations between many
grees of freedom. The efforts to understand the dynamic
economic systems have involved empirical studies in wh
the temporal fluctuations of the prices of individual comp
nies as well as of stock market indices such as the Stan
& Poor 500~S&P500! were examined@1–8#. These fluctua-
tions can be characterized by the distribution of stock ma
returns as well as the volatility, which quantifies the mag
tude of the market fluctuations.

Consider a stock market indexW̄(t). Its value is propor-
tional to the average of the market valuesWi , i 51, . . . ,N
~given by the stock price of each firm times the number of
outstanding shares! of the N stocks that are included in thi
index. The fluctuations ofW̄ can be expressed in terms of th
returns after a period of timet ~say, in minutes!, given by

r ~t!5 ln W̄~ t1t!2 ln W̄~ t !. ~1!

For any value oft one can examine the distributionP(r ) of
the returnsr (t). The number of independent data poin
available in the distribution is given byT/t, whereT is the
time period covered in the available data set. It was obser
long ago that such distributions exhibit slowly decaying ta
unlike the Gaussian or exponential distributions. Moreov
the shape of the distribution was found to exhibit a se
similar form for different choices oft. It was proposed by
Mandelbrot@9# thatP(r ) may be expressed by a Le´vy-stable
distributionLa(r ), where 0,a<2 @10,11#. Mathematically,
the Lévy distribution La(r ) is the limit n→` of the distri-
bution of the sum ofn independent stochastic variables tak
from a power-law distribution of the formp(r );r 212a
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when 0,a<2 ~which clearly exhibits an infinite variance!.
This is unlike the case of a distribution with a finite varianc
which leads to a Gaussian distribution of the sum, accord
to the central limit theorem. The Le´vy distribution thus ex-
hibits an infinite variance. However, in practical applicatio
its tail is truncated due to an upper cutoff in the power-la
distribution that generated it@12#. Although the Le´vy distri-
bution cannot be expressed in a closed form@13#, it has two
scaling properties that can be used in order to exam
whether a distributionP(r ) obtained from empirical data o
numerical simulations is a~truncated! Lévy distribution and
to calculate its index 0,a<2. The first property involves
the dependence of the central peak height on the timet, and
takes the form@13#

La~r 50!;t21/a. ~2!

Thus, if the distribution of returnsP(r ) is a ~truncated! Lévy
distribution, the value ofa can be obtained from the slope o
the graph ofP(r 50) vs t on a log-log scale. The secon
property involves the power-law decay of the tails of t
distribution which follows@13#

La~r !;r 212a. ~3!

Therefore, if the distributionP(r ) is a ~truncated! Lévy dis-
tribution, the value ofa can also be obtained from the slop
of the tail of P(r ) vs r on a log-log scale. Obviously, a Le´vy
distribution should satisfy the scaling relations for both t
central peak and the tail, with the same exponenta.

The distributionP(r ) of the returnsr (t) for the S&P500
stock market index was recently studied for a range ot
values, using the data for the six-year period of 1984–89@1#.
The scaling of the central peak height vst was examined
within the range of 1<t<1000 min yielding a straight line
©2001 The American Physical Society01-1
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in the log-log scale over three orders of magnitude, with
slope that corresponds toa51.4. It was thus concluded tha
P(r ) takes the form of a truncated Le´vy distribution La(r )
with the indexa51.4. More recently the data set was e
tended to cover a 13-year period~1984–96! and was exam-
ined using a scaling analysis of the tail of the distributi
P(r ) of the returnsr (t) for t in the range between 1 mi
and 4 days.@2#. It was found that the tail ofP(r ) vs r on a
log-log scale exhibits a straight line domain, indicating
power-law dependence given by Eq.~3!. However, the slope
was found to be consistent witha in the range 2.5,a
,3.5, where the precise value depends on details such a
value oft and the fitting procedure. Clearly, these values
a are well outside the Le´vy-stable range of 0,a<2. There-
fore, not only is the distributionP(r ) not a Lévy distribution
with a51.4—it is not a Le´vy distribution at all. This result
appears to be in disagreement with the conclusions of R
@1#. We thus observe that while the central peak maintains
Lévy features the tails show a non-Le´vy behavior. In order to
understand these puzzling results one needs to combine
oretical studies, suitable models, and simulations of st
market dynamics, complementary to the empirical analys

In this paper we study the distribution of the returnsP(r )
in a dynamical model that describes the time evolution
stock market indices@14–17#. The model consists of dy
namic variableswi , i 51, . . . ,N that represent the capital
zation~total market values! of N firms. The dynamics repre
sents the increase~or decrease! by a random factorl(t)
@taken from a predefined distributionP(l)# of the valuewi
of the firm i between timest and t11. The dynamical rules
also enforce a lower bound on thewi ’s, which is a certain
fraction 0<c,1 of the momentary average of thewi ’s. This
lower bound may represent the minimal requirements fo
company stock to be publicly traded. It turns out that af
some equilibration time thewi ’s exhibit a power-law distri-
bution of the formp(w);w212a @17#. For any given value
of N, the exponenta.0 is a monotonically increasing func
tion of c. Sincer (t) can be considered as a sum oft random
variables taken from a power-law distributionp(w), one
may expect it to converge to the Le´vy distribution La(r )
with the same exponenta. Since the power-law distribution
is truncated from above, the tail of the resulting Le´vy distri-
bution is also expected to be truncated@12#. Clearly, the dy-
namics is much more complicated. One reason for this is
the t random variables are not completely independen
they are taken from a finite set ofN values of thewi ’s.
Moreover, these values slowly change during the calcula
of r (t), because at each time step one of thewi ’s is updated.

To analyze the distribution of returnsP(r ) we first tune
the parameterc ~for the given value ofN) to adjust the
power-law distribution to the economically relevant case
a51.4 @1,18#. We then examine the distribution of return
P(r ) for a range of time intervalst and test the scaling
behavior of the central peak as well as of the tails. It is fou
that the scaling of the central peak is consistent with a tr
cated Lévy distribution with a51.4 for a broad range of 1
<t<1000. For small values oft, up to aboutt550 ~for
N51000) the power-law decay of the tail ofP(r ) is also
02610
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consistent with a truncated Le´vy distribution with the same
value ofa. However, for larger values oft the tail of P(r )
exhibits a power-law decay consistent witha.2, and thus
deviates from the Le´vy distribution. These results are i
agreement with the empirical analysis of the central pe
presented in Ref.@1# as well as with the more recent analys
of the tails presented in Ref.@2#. They thus reconcile the
apparent disagreement between these two empirical stud

The paper is organized as follows. In Sec. II we pres
the model. Simulations and results are reported in Sec.
followed by a summary in Sec. IV.

II. THE MODEL

The model@14,15,17# describes the evolution in discret
time of N dynamic variableswi(t), i 51, . . . ,N. At each
time stept, an integeri is chosen randomly in the range
< i<N, which is the index of the dynamic variablewi to be
updated at that time step. A random multiplicative fac
l(t) is then drawn from a given distributionP(l), which is
independent ofi and t and satisfies*lP(l)dl51. This can
be, for example, a uniform distribution in the rangelmin
<l<lmax, wherelmin andlmax are predefined limits. The
system is then updated according to the following stocha
time evolution equation:

wi~ t11!5l~ t !wi~ t !,

wj~ t11!5wj~ t !, j 51, . . . ,N; j Þ i . ~4!

This is an asynchronous update mechanism. The ave
value of the system components at timet is given by

w̄~ t !5
1

N (
i 51

N

wi~ t !. ~5!

The term on the right-hand side of Eq.~4! describes the
effect of autocatalysis at the individual level. In addition
the update rule of Eq.~4!, the value of the updated variabl
wi(t11) is constrained to be larger than or equal to so
lower bound which is proportional to the momentary avera
value of thewi ’s according to

wi~ t11!>cw̄~ t ! ~6!

where 0<c,1 is a constant factor. This constraint is im
posed immediately after step~4! by setting

wi~ t11!→max$wi~ t11!,cw̄~ t !%, ~7!

wherew̄(t), evaluated just before the application of Eq.~4!,
is used. This constraint describes the effect of autocatal
at the community level. Numerical simulations of the st
chastic multiplicative process described by Eqs.~4! and ~7!
show that thewi ’s follow a power-law distribution of the
form

p~w!5Kw212a ~8!
1-2
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for a wide range of lower boundsc, whereK is a normaliza-
tion factor@17#. It was found that the exponenta depends on
the parametersc andN and is insensitive to the shape of th
probability distributionP(l). For simplicity, we usel uni-
formly distributed in the range 0.9<l<1.1.

III. SIMULATIONS AND RESULTS

In the simulations below the number of dynamical va
ables isN51000 and the lower cutoff is chosen asc50.3,
the value that provides the economically relevant distribut
characterized bya51.4 @1,18#. Under these conditionsp(w)
exhibits a power-law distribution within three decades, b
tweenwmin50.0003 andwmax50.3. The data for this distri-
bution were obtained from a large number of simulatio
collecting data at different times within each simulation af
some equilibration time. To remove the possible effect
inflation, the values of thewi ’s fed into the distributionp(w)
were normalized such that at any timet the sum( iwi(t)
51, namely,w̄(t)51/N @17#. In the analysis of the returns
there is no need for such a normalization adjustment, du
the fact that the returns quantify changes relative to the
rent value ofw̄, i.e., they are normalized by definition.

Consider the time evolution of the averagew̄(t). At each
time step, when Eq.~4! is applied, neglecting the effect o
the lower cutoff we obtain

w̄~ t11!5w̄~ t !1
1

N
@l~ t !21#wi~ t !. ~9!

This can be considered as a generalized random walk
step sizes distributed according to Eq.~8!. Therefore, the
returns aftert time steps, given by

r ~t!5 ln w̄~ t1t!2 ln w̄~ t !, ~10!

are expected to follow a a truncated Le´vy distributionLa(r )
@12#. Note that for small time intervals, the returns given
Eq. ~10! coincide with the relative change given by

r̃ ~t!5
w̄~ t1t!2w̄~ t !

w̄~ t !
. ~11!

However, for larget these two expressions provide signi
cantly different results.

In Fig. 1 we show the rescaled distributiont1/aP(r /t1/a)
of the returnsr (t) for t51, 50, 200, and 1000. Near th
central peak the four rescaled graphs collapse into a sim
shape. The graphs fort51 and 50 maintain a similar res
caled form in the tails also while for larger values oft the
tails go down more sharply.

The value ofa that characterizes the distribution can
obtained from the scaling of the central peak height a
function of t, according to Eq.~2!. In Fig. 2 we show the
height of the peakP(r 50) as a function oft on a log-log
scale. It is found that the slope of the fit is20.71, which
02610
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following the scaling relation of Eq.~2! means that the index
of the Lévy distribution isa521/(20.71)51.4.

To characterize the nature of the distributionP(r ) we also
examine the scaling behavior of the tails. For the Le´vy dis-
tribution the tail is expected to follow a power-law behavi
given by Eq.~3!. In Fig. 3 we present the tail of the distr
bution P(r ), on a log-log scale fort51. It is found that the
slope is2(11a)522.4 which corresponds to a Le´vy dis-
tribution with a51.4. For larger values oft, the tails exhibit
steeper slopes that exceed the domain of the Le´vy distribu-

FIG. 1. The rescaled distribution of the returnst1/aP„r (t)/t1/a
…

for t51, 50, 200, and 1000. In the vicinity of the central peak w
observe a collapse of all four graphs into a similar shape. The
for the two smaller values oft follow the Lévy-stable distribution
with a51.4. The tails for the two larger values oft fall off more
sharply and exhibit significant deviations from the Le´vy-stable
shape.

FIG. 2. The height of the central peakP„r (t)50… vs t on a
log-log scale. For a broad range of nearly three orders of magni
in t values up tot51000, the slope of the straight line is21/a
520.71, which corresponds to a Le´vy distribution witha51.4.
1-3
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BIHAM, HUANG, MALCAI, AND SOLOMON PHYSICAL REVIEW E 64 026101
tion, namely,a becomes larger than 2. As an example,
present in Fig. 4 the distributionP(r ) of r (t) for t5104 on
a log-log scale. We identify a range of about one order
magnitude in which the apparent slope is2(11a)523.5,
corresponding toa52.5, which is outside the domain of th
Lévy distribution. It is thus observed that the tails of th
distributionP(r ) are much more sensitive to deviations fro
a Lévy-stable process than is the central peak.

These results are in agreement with the empirical anal
of the central peak presented in Ref.@1# as well as with the
analysis of the tails presented in Ref.@2#. They thus reconcile
the apparent disagreement between these two empirical
ies. To relate the parameters of the model more closely to
empirical studies we note that the typical time required fo
single stock market transaction is of the order of 1 m
However, the transactions are done simultaneously in all
stocks included in the index that is analyzed. Therefore,
single transaction-time unit~say, 1 min! roughly corre-
sponds, in the model, tot5N time steps. The results of Fig
4 for t5104 are thus expected to correspond to a time int
val of several minutes in the empirical analysis. Indeed,
value ofa52.5 obtained in the numerical simulations is on
slightly lower than the empirical results obtained fort in the
range between 1 and 512 min.

In the model we observe significant deviations from t
Lévy distribution ast increases toward the order ofN. A
possible explanation is that at this stage some of thewi ’s are
already sampled more than once in the sequence oft time
steps required to calculate one instance ofr (t). This violates
the requirement in the construction of a~truncated! Lévy-
stable distribution that thet random variables should be in
dependent. This starts to introduce significant correlati
between the different variables that composer (t).

Another correlation effect is intrinsic to the calculation
the returns. Consider the returnr (t), which is given by

FIG. 3. The distributionP(r ) of r (t) on a log-log scale, fort
51. The tail exhibits a range of power-law behavior according
Eq. ~3! with a51.4, namely, following a Le´vy distribution with the
same value ofa.
02610
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r ~t!5(
t51

t

lnF11@l~ t !21#
wi~ t !

w̄~ t !
G , ~12!

where the variablewi(t) is independently picked at any tim
t. Note that the return depends on the normalized quant
wi85wi(t)/w̄(t). It is easy to see that thewi8’s are not inde-
pendent since at any timet they satisfy( iwi85N. This de-
pendence is particularly apparent for the largewi8’s, since if
one of them turns out to be extremely large the normalizat
condition prevents otherwj8’s from having values in its vi-
cinity.

IV. SUMMARY

Recent empirical studies of the fluctuations in stock m
ket indices have provided conflicting results. In these stud
the distributionP(r ) of stock market returnsr (t) after time
t was examined. The scaling of the central peak ofP(r ) was
found to be consistent with a~truncated! Lévy-stable distri-
bution with indexa51.4 @1#. However, the scaling of the
tails, for a broad range oft values between 1 min and a fe
days, was found to exhibit a power-law behavior with
exponenta>3, which is well outside the range of the Le´vy
distribution @2#.

In this paper we have examined the distributionP(r ) for
a model that describes the dynamics of stock market indi
The model consists of dynamical variableswi , i 51, . . . ,N,
that describe the time-dependent market values ofN firms,
while their average is the corresponding stock market ind
It was found that the scaling of the central peak is consis
with a Lévy distribution and its index can be tuned to th
economically relevant value ofa51.4 by tuning a param-

FIG. 4. The distributionP(r ) of r (t) on a log-log scale, fort
5104. The tail exhibits a range of about one order of magnitu
with an apparent power-law behavior. The slope in this range
consistent with Eq.~3! with a52.5. This value is not only differen
from thea51.4 observed for short times, but is outside the ran
for Lévy-stable distributions. This curve strongly resembles the e
pirical distributions for the S&P500 presented in Ref.@2#.
1-4
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eter. The tails of the distributionsP(r ) of the returnsr (t),
for a range oft values that corresponds to the empirica
studied time intervals, were found to exhibit a domain
power-law behavior witha.2, which falls outside the rang
d
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y,
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d
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of the Lévy distribution. These results are fully consiste
with the empirical results both for the central peak and
the tails and reconcile the apparent disagreement betw
them.
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